JavaScript Moving the Promises one level up Disclaimer: Feedback from some people who have read this is that this approach is not suitable for production - I tend to agree with this. It is rather an idea on how to

Estimating complexity of software projects: Tool Online tool for running software development process simulations.

Analysing Properties of the Software Development Process through Simulations The approach shown in this article is a modelling of the software development process using agent-based modelling concepts. The agents of the model corresponds to participants of the software development process, such as

Estimating Project Completion Time In this article the problem of estimating project completion time is addressed by fracturing the project into requirements and considering the completion time of the individual requirement to be probabilistic.The software development

Will package repositories pay developers for their libraries? Let's do a thought experiment. Imagine for a moment a package manager that asks some money for its service. NPM does it for advanced services but lets imagine that any request to the

JavaScript Node.js 10: Important Changes The recent release of the node.js is a major milestone in its development. It contains many changes in the library, bugfixes and updated v8 engine. the complete changelog is here. This is

.NET Refactoring locks into sharing immutables So if both Eric Lippert and Jon Skeet think lock free programming is only for people smarter than themselves, then I will humbly run away screaming from the idea immediately. – dodgy_coder – SO

.NET Deadlock example, .NET It is actually a bit surprising, but many .NET developers have never had deadlocks in their code. Some very good developers may not have seen them for years. So it may be a

HackerRank Functional Challenges HR F#: Functions and Fractals: Sierpinski triangles The problem of drawing the Sierpinski triangles is considered to be advanced problem and it really is. The Sierpinski triangle is a fractal, constructed by recursively subdividing equilateral triangles into smaller equilateral triangles.

HackerRank Functional Challenges HR F#: Pascal's Triangle The second problem from the Recursive subdomain is printing Pascal's Triangle for given n. Pascal's triangle is named after famous French mathematician from XVII century, Blaise Pascal. His findings on the properties of

HackerRank Functional Challenges HR F#: Computing the GCD The greatest common divisor (or GCD) of two integers is the largest positive integer that divides two of these integers. The first of the Recursion problems on the Functional track at Hackerrank is

F# F#: How to check that tail recursion calls are optimised The tail recursion optimisation happens when a compiler decides that instead of performing recursive function call (and add new entry to the execution stack) it is possible to use loop-like approach and just

F# Quickstart WPF F#-only app in VSCode - Part 3 How to quickly create WPF F# project was shown in the first part. FsXaml and paket was added in the second part. This part will go reactive: add ReactiveUI and show how to

F# Quickstart WPF F#-only app in VSCode - Part 2 The first part shown how to create a WPF F# project with simple window and its view model, build this project and run it. Now lets add FsXaml using packet, use it to

Quiz The Oxford Green Belt Way problem Here is a problem for you to test your programming skills. The Oxford Green Belt Way is a 50-mile circular walk around the city. It goes through the beautiful countryside, quiet fields and

HackerRank Functional Challenges HR F#: Compute the Area of a Polygon This is the last from the introductional problems in the Functional Programming domain on Hackerrank. This also might be most complicated among the introductionary problems: You are given the cartesian coordinates of a

HackerRank Functional Challenges HR F#: Compute the Perimeter of a Polygon The problem of computing perimeter of the polygon is one of the easy problems, but it requires a bit more programming. You are given the cartesian coordinates of a set of points in

HackerRank Functional Challenges HR F#: Functions or Not? The Functions or Not? problem is defined as follows: You are given a set of unique (x, y) ordered pairs constituting a relation. For each of these relations, identify whether they may possibly

HackerRank Functional Challenges HR F#: Lambda Calculus - Evaluating Expressions #5 This is even more simple than the previous one. Compute the value of λx.λy.y. The answer is 0. See the same Church numerals table.

HackerRank Functional Challenges HR F#: Lambda Calculus - Evaluating Expressions #4 This problem just checks how well you have got the idea of Church encoding while solving the previous problem. Compute the value of λx.λy.x(xy). Just by looking at the definition

HackerRank Functional Challenges HR F#: Lambda Calculus - Evaluating Expressions #3 Although the Lambda Calculus - Evaluating Expressions #3 is probably the most simple of all the functional problems on Hackerrank (it is quite easy to solve it and even more easy to guess

HackerRank Functional Challenges HR F#: Lambda Calculus - Evaluating Expressions #2 The first λ-calculus evaluating expression problem was very easy. The second one is similar: Compute the value of (λx.x+1)((λy.y+2)3). Just to make a bit more fun from

HackerRank Functional Challenges HR F#: Lambda Calculus - Evaluating Expressions #1 The next set of problems are about performing calculations with λ-functions. The first one is to check that the reader is confident with mixing λ-calculus and algebraic operators: Compute the value of (λx.

HackerRank Functional Challenges HR F#: Lambda Calculus - Reductions #4 The last one from reduction problems is following: Reduce the following expression, using the beta-rule, to no more than one term. If the expression cannot be reduced, enter "CAN'T REDUCE". (λg.