Bookshelf There is no too much books that are really useful for the software developers. I think that the main reason for that is availability of online guides and tutorials. However, it is not

JavaScript Node.js 10: Important Changes The recent release of the node.js is a major milestone in its development. It contains many changes in the library, bugfixes and updated v8 engine. the complete changelog is here. Below are

.NET Refactor locking into sharing immutables So if both Eric Lippert and Jon Skeet think lock free programming is only for people smarter than themselves, then I will humbly run away screaming from the idea immediately. – dodgy_coder – SO

.NET Deadlock example, .NET It is actually a bit surprising, but many .NET developers have never had deadlocks in their code. Some very good developers may not have seen them for years. So it may be a

JavaScript Good coffee shops in London and how to place them on the map Scientists not sure whether the coffee is good or bad for health. However, and that's for sure, a good coffee is much better than a bad coffee. Coffee shop is not only about

HackerRank Functional Challenges HR F#: Functions and Fractals: Sierpinski triangles The problem of drawing the Sierpinski triangles is considered to be advanced problem and it really is. The Sierpinski triangle is a fractal, constructed by recursively subdividing equilateral triangles into smaller equilateral triangles.

HackerRank Functional Challenges HR F#: Pascal's Triangle The second problem from the Recursive subdomain is printing Pascal's Triangle for given n. Pascal's triangle is named after famous French mathematician from XVII century, Blaise Pascal. His findings on the properties of

HackerRank Functional Challenges HR F#: Computing the GCD The greatest common divisor (or GCD) of two integers is the largest positive integer that divides two of these integers. The first of the Recursion problems on the Functional track at Hackerrank is

F# F#: How to check that tail recursion calls are optimised The tail recursion optimisation happens when a compiler decides that instead of performing recursive function call (and add new entry to the execution stack) it is possible to use loop-like approach and just

F# Quickstart WPF F#-only app in VSCode - Part 3 How to quickly create WPF F# project was shown in the first part. FsXaml and paket was added in the second part. This part will go reactive: add ReactiveUI and show how to

F# Quickstart WPF F#-only app in VSCode - Part 2 The first part shown how to create a WPF F# project with simple window and its view model, build this project and run it. Now lets add FsXaml using packet, use it to

Quiz The Oxford Green Belt Way problem Here is a problem for you to test your programming skills. The Oxford Green Belt Way is a 50-mile circular walk around the city. It goes through the beautiful countryside, quiet fields and

HackerRank Functional Challenges HR F#: Compute the Area of a Polygon This is the last from the introductional problems in the Functional Programming domain on Hackerrank. This also might be most complicated among the introductionary problems: You are given the cartesian coordinates of a

HackerRank Functional Challenges HR F#: Compute the Perimeter of a Polygon The problem of computing perimeter of the polygon is one of the easy problems, but it requires a bit more programming. You are given the cartesian coordinates of a set of points in

HackerRank Functional Challenges HR F#: Functions or Not? The Functions or Not? problem is defined as follows: You are given a set of unique (x, y) ordered pairs constituting a relation. For each of these relations, identify whether they may possibly

HackerRank Functional Challenges HR F#: Lambda Calculus - Evaluating Expressions #5 This is even more simple than the previous one. Compute the value of λx.λy.y. The answer is 0. See the same Church numerals table.

HackerRank Functional Challenges HR F#: Lambda Calculus - Evaluating Expressions #4 This problem just checks how well you have got the idea of Church encoding while solving the previous problem. Compute the value of λx.λy.x(xy). Just by looking at the definition

HackerRank Functional Challenges HR F#: Lambda Calculus - Evaluating Expressions #3 Although the Lambda Calculus - Evaluating Expressions #3 is probably the most simple of all the functional problems on Hackerrank (it is quite easy to solve it and even more easy to guess

HackerRank Functional Challenges HR F#: Lambda Calculus - Evaluating Expressions #2 The first λ-calculus evaluating expression problem was very easy. The second one is similar: Compute the value of (λx.x+1)((λy.y+2)3). Just to make a bit more fun from

HackerRank Functional Challenges HR F#: Lambda Calculus - Evaluating Expressions #1 The next set of problems are about performing calculations with λ-functions. The first one is to check that the reader is confident with mixing λ-calculus and algebraic operators: Compute the value of (λx.

HackerRank Functional Challenges HR F#: Lambda Calculus - Reductions #4 The last one from reduction problems is following: Reduce the following expression, using the beta-rule, to no more than one term. If the expression cannot be reduced, enter "CAN'T REDUCE". (λg.

HackerRank Functional Challenges HR F#: Lambda Calculus - Reductions #3 The third λ-calculus problem is a bit more advanced (although still simple): Reduce the following expression, using the beta-rule, to no more than one term. If the expression cannot be reduced, enter "

HackerRank Functional Challenges HR F#: Lambda Calculus - Reductions #2 The second λ-calculus problem is following: Reduce the following to no more than one term. If the expression cannot be reduced, enter "CAN'T REDUCE". ((λx.((λy.(x y)) x)) (λz.w)

HackerRank Functional Challenges HR F#: Lambda Calculus - Reductions #1 The Lambda Calculus - Reductions #1 is rather unusual. Instead of submitting the code, the required submission is a shortening of the lambda-expression. Reduce the following expression to no more than one term.